terça-feira, 30 de março de 2010

EDO 012 – Equações redutíveis a exata

Dada uma equação de primeira ordem na forma diferencial

image

ela é dita exata se

image

A solução das equações que satisfazem esta condição já foi vista. Se

image

a equação será dita inexata. Para reduzi-la a uma equação exata é preciso encontrar um fator integrante r(u,t) tal que

image

satisfaça a condição das equações exatas, isto é,

 

image

Para achar r(u, t) é necessário resolver a equação diferencial parcial linear de primeira ordem

image

Atacar uma equação diferencial parcial para resolver uma equação diferencial ordinária nem pensar. Apenas dois casos serão considerados:

1. O fator integrante é apenas função de u. Neste caso, a equação diferencial parcial se reduz à ordinária

      image

 

 

Observando a equação diferencial ordinária acima se percebe que um fator integrante dependente apenas de u só será possível se

image

Se a condição acima for satisfeita a solução da equação ordinária resultante é trivial.

2. O fator integrante é apenas função de t.  Neste caso, surge a seguinte equação ordinária

image

Analogamente ao caso anterior, o fator integrante só poderá ser função de t se

image

Como no caso anterior, se a condição acima for satisfeita encontrar o fator integrante é simples.

 

 

terça-feira, 23 de março de 2010

Triturador de mandíbula

A redução do tamanho de particulas é uma operação importante das indústrias químicas. Ela é conhecida como trituração e moagem e como cominuição. Muitos desenhos deste tipo de equipamentos desenvolvidos empiricamente e usados. Na prática existe uma seleção darwiniana e apenas os melhores equipamentos sobrevivem.

As triturações podem ser classificadas em: em grosseiras, intermédiarias e finas. Os trituradores grosseiros recebem o material bruto que podem ter blocos de até 1,5m.Contudo, para ser classifacado como grosseiro basta receber material com particulas cujos tamanhos superam 25 centimetros. Os moedores finos conseguem reduzir o tamanho das particulas ao pontos delas passarem numa peneira de 200 mesh. Os trituradores intermediários são limitados no tamanho das particulas que podem receber, não chegando ao ponto de ser classificado como grosseiro e nem conseguem moer ao ponto de passar numa peneira de 200 mesh como os moedores finos. Eles recebem o material dos moedores grosseiros e entregam aos moedores finos.

O principal triturador grosseiro é o triturador de mandibulas. Como o nome está sugerindo, ele “mastiga” as particulas. Eles são constituidos por duas mandíbulas, uma fixa e posicionada verticalmente e outra móvel inclinada em relação da fixa. As figuras abaixo valem por mil palavras.

Os trituradores de mandíbula caem tem duas categorias: do tipo Dodge e do tipo Blake.  Nos trituradores do tipo Dodge o eixo de movimento fica na base. A abertura na base permanece praticamente fixa e controla o tamanho máximo das partículas que saem do triturador. O angulo de abertura varia entre 20° e 30° graus.  A figura abaixo mostra um triturador do tipo Dodge.

 image

Nos trituradores do tipo Blake o eixo de movimento da mandibula móvel fica em cima como mostra a figura abaixo. O movimento da mandíbula faz com que a saida tenha área variável.

 image

O triturador de mandibulas mais comum é o do tipo Blake. Para ser preciso, o triturador de mandíbula do tipo Dodge é raro. Isto acontece porque ele tem uma tendencia desagradável de entupir.

quarta-feira, 17 de março de 2010

Como funcionam os reatores bioquímicos

Nos reatores bioquímicos a transformação química é realizada por uma população de células vivas. Por exemplo, na produção de ácido cítrico a partir da sacarose o agente da transformação é o microrganismo Aspergillus niger. Na produção de etanol a partir da mesma sacarose o agente é o Saccharomices cerevisiae. É desta forma que são obtidos os antibióticos, enzimas, etc.

Basicamente a população microbiana viceja num caldo nutritivo. Cada individuo da população retira do caldo os nutrientes necessários ao crescimento celular e a manutenção do processo vital. Numa visão bastante simplificada, os nutrientes uma vez dentro da célula tomam dois rumos.

  • Num as moléculas são quebradas para a produção da energia necessária ao processo vital e as reações de síntese das macromoléculas constituintes das célula vivas num processo conhecido como catabolismo. Os fragmentos de moléculas são liberados no meio.  
  • Noutro as moléculas de nutrientes são usado como tijolos na construção das macromoléculas constituintes da célula vida. Neste processo a célula utiliza a energia produzida pelo catabolismo celular. Estas reações são conhecidas como reações anabólicas e compõe o anabolismo celular.

 

image

Se o produto desejado é um produto do catabolismo ele é encontrado no caldo fermentado de onde deve ser isolado e purificado. Os produtos do anabolismo em geral se localizam dentro das células vivas, as quais devem ser separadas do caldo fermentado e fragmentadas liberando o conteudo celular onde está a substância de interesse que deve ser isolada e purificada. Alguns produtos do anabolismo são exsudados no meio fermentado onde podem ser encontrados. É o caso dos antibióticos e de alguns enzymas.

É bom ressaltar, nesta altura, que a visão acima é muito simplificada. No interior da célula viva ocorrem mais de 5000 reações quase todas catalisadas por enzimas específicos. O estudo e o manuseio destas reações é objeto da engenharia metabólica.

terça-feira, 16 de março de 2010

Níveis de biossegurança

Estes níveis se aplicam a ambientes onde agentes biológicos são manuseados. O microrganismo determina o nível de biossegurança e quanto mais perigoso o microrganismo manuseado mais alto será o nível.

NB-1 - É o nível de contenção que se aplica aos laboratórios onde são manipulados microrganismos nunca descritos como causadores de doenças e que não constituem risco para o meio ambiente. Este nível não exige nenhum cuidado especial no projeto do laboratório além de um bom planejamento espacial e funcional.  Exemplo: Saccharomyces cerevisiae.

NB-2 – Neste nível estão os laboratórios que manuseiam agentes associados com doenças humanas com pouco risco para os profissionais do laboratório. Moderado risco individual e baixo risco coletivo. O projeto do laboratório deve ser mais elaborado com barreiras de contenção físicas e uso de equipamentos de proteção individuais.

NB-3 – Estão neste nível os laboratórios que manuseiam agentes biológicos associados a doenças humanas graves, mas não facilmente transmissiveis. Neste caso, o risco individual é alto e o coletivo é baixo. As exigências quanto ao projeto do laboratório passam a ser maiores e deve ser mantido controle rígido quanto a operação, inspeção e manutenção das instalações e equipamentos e o pessoal técnico deve receber treinamento específico sobre procedimentos de segurança para a manipulação destes microrganismos.

NB-4 – Neste nível estão os laboratórios de maior nível de contenção, incluindo a separação física das demais dependencias. São laboratórios que trabalham com agentes altamente infecciosos e que se propagam facilmente.

Para classificar o laboratório num destes níveis basta procurá-lo numa das muitas listas disponíveis. Aqui no Brasil a agência que cuida disso é a ANVISA. Se o microrganismo não aparecer na lista torna-se necessário um estudo para descobrir em que nível ele se enquadra.

O conhecimento destes níveis interessa aos engenheiros químicos que atuam nas indústrias bioquímicas e farmacêuticas.